Community and Contributions
(Click the image above to view video of this lesson)
Overview
This lesson focuses on how to engage with the MCP community, contribute to the MCP ecosystem, and follow best practices for collaborative development. Understanding how to participate in open-source MCP projects is essential for those looking to shape the future of this technology.
Learning Objectives
By the end of this lesson, you will be able to:
- Understand the structure of the MCP community and ecosystem
- Participate effectively in MCP community forums and discussions
- Contribute to MCP open-source repositories
- Create and share custom MCP tools and servers
- Follow best practices for MCP development and collaboration
- Discover community resources and frameworks for MCP development
The MCP Community Ecosystem
The MCP ecosystem consists of various components and participants that work together to advance the protocol.
Key Community Components
- Core Protocol Maintainers: The official Model Context Protocol GitHub organization maintains the core MCP specifications and reference implementations
- Tool Developers: Individuals and teams that create MCP tools and servers
- Integration Providers: Companies that integrate MCP into their products and services
- End Users: Developers and organizations that use MCP in their applications
- Contributors: Community members who contribute code, documentation, or other resources
Community Resources
Official Channels
- MCP GitHub Organization
- MCP Documentation
- MCP Specification
- GitHub Discussions
- MCP Examples & Servers Repository
Community-Driven Resources
- MCP Clients - List of clients that support MCP integrations
- Community MCP Servers - Growing list of community-developed MCP servers
- Awesome MCP Servers - Curated list of MCP servers
- PulseMCP - Community hub & newsletter for discovering MCP resources
- Discord Server - Connect with MCP developers
- Language-specific SDK implementations
- Blog posts and tutorials
Contributing to MCP
Types of Contributions
The MCP ecosystem welcomes various types of contributions:
Code Contributions:
- Core protocol enhancements
- Bug fixes
- Tool and server implementations
- Client/server libraries in different languages
Documentation:
- Improving existing documentation
- Creating tutorials and guides
- Translating documentation
- Creating examples and sample applications
Community Support:
- Answering questions on forums and discussions
- Testing and reporting issues
- Organizing community events
- Mentoring new contributors
Contribution Process: Core Protocol
To contribute to the core MCP protocol or official implementations, follow these principles from the official contributing guidelines:
Simplicity and Minimalism: The MCP specification maintains a high bar for adding new concepts. It’s easier to add things to a specification than to remove them.
Concrete Approach: Specification changes should be based on specific implementation challenges, not speculative ideas.
Stages of a Proposal:
- Define: Explore the problem space, validate that other MCP users face a similar issue
- Prototype: Build an example solution and demonstrate its practical application
- Write: Based on the prototype, write a specification proposal
Development Environment Setup
# Fork the repository
git clone https://github.com/YOUR-USERNAME/modelcontextprotocol.git
cd modelcontextprotocol
# Install dependencies
npm install
# For schema changes, validate and generate schema.json:
npm run check:schema:ts
npm run generate:schema
# For documentation changes
npm run check:docs
npm run format
# Preview documentation locally (optional):
npm run serve:docs
Example: Contributing a Bug Fix
// Original code with bug in the typescript-sdk
export function validateResource(resource: unknown): resource is MCPResource {
if (!resource || typeof resource !== 'object') {
return false;
}
// Bug: Missing property validation
// Current implementation:
const hasName = 'name' in resource;
const hasSchema = 'schema' in resource;
return hasName && hasSchema;
}
// Fixed implementation in a contribution
export function validateResource(resource: unknown): resource is MCPResource {
if (!resource || typeof resource !== 'object') {
return false;
}
// Improved validation
const hasName = 'name' in resource && typeof (resource as MCPResource).name === 'string';
const hasSchema = 'schema' in resource && typeof (resource as MCPResource).schema === 'object';
const hasDescription = !('description' in resource) || typeof (resource as MCPResource).description === 'string';
return hasName && hasSchema && hasDescription;
}
Example: Contributing a New Tool to the Standard Library
# Example contribution: A CSV data processing tool for the MCP standard library
from mcp_tools import Tool, ToolRequest, ToolResponse, ToolExecutionException
import pandas as pd
import io
import json
from typing import Dict, Any, List, Optional
class CsvProcessingTool(Tool):
"""
Tool for processing and analyzing CSV data.
This tool allows models to extract information from CSV files,
run basic analysis, and convert data between formats.
"""
def get_name(self):
return "csvProcessor"
def get_description(self):
return "Processes and analyzes CSV data"
def get_schema(self):
return {
"type": "object",
"properties": {
"csvData": {
"type": "string",
"description": "CSV data as a string"
},
"csvUrl": {
"type": "string",
"description": "URL to a CSV file (alternative to csvData)"
},
"operation": {
"type": "string",
"enum": ["summary", "filter", "transform", "convert"],
"description": "Operation to perform on the CSV data"
},
"filterColumn": {
"type": "string",
"description": "Column to filter by (for filter operation)"
},
"filterValue": {
"type": "string",
"description": "Value to filter for (for filter operation)"
},
"outputFormat": {
"type": "string",
"enum": ["json", "csv", "markdown"],
"default": "json",
"description": "Output format for the processed data"
}
},
"oneOf": [
{"required": ["csvData", "operation"]},
{"required": ["csvUrl", "operation"]}
]
}
async def execute_async(self, request: ToolRequest) -> ToolResponse:
try:
# Extract parameters
operation = request.parameters.get("operation")
output_format = request.parameters.get("outputFormat", "json")
# Get CSV data from either direct data or URL
df = await self._get_dataframe(request)
# Process based on requested operation
result = {}
if operation == "summary":
result = self._generate_summary(df)
elif operation == "filter":
column = request.parameters.get("filterColumn")
value = request.parameters.get("filterValue")
if not column:
raise ToolExecutionException("filterColumn is required for filter operation")
result = self._filter_data(df, column, value)
elif operation == "transform":
result = self._transform_data(df, request.parameters)
elif operation == "convert":
result = self._convert_format(df, output_format)
else:
raise ToolExecutionException(f"Unknown operation: {operation}")
return ToolResponse(result=result)
except Exception as e:
raise ToolExecutionException(f"CSV processing failed: {str(e)}")
async def _get_dataframe(self, request: ToolRequest) -> pd.DataFrame:
"""Gets a pandas DataFrame from either CSV data or URL"""
if "csvData" in request.parameters:
csv_data = request.parameters.get("csvData")
return pd.read_csv(io.StringIO(csv_data))
elif "csvUrl" in request.parameters:
csv_url = request.parameters.get("csvUrl")
return pd.read_csv(csv_url)
else:
raise ToolExecutionException("Either csvData or csvUrl must be provided")
def _generate_summary(self, df: pd.DataFrame) -> Dict[str, Any]:
"""Generates a summary of the CSV data"""
return {
"columns": df.columns.tolist(),
"rowCount": len(df),
"columnCount": len(df.columns),
"numericColumns": df.select_dtypes(include=['number']).columns.tolist(),
"categoricalColumns": df.select_dtypes(include=['object']).columns.tolist(),
"sampleRows": json.loads(df.head(5).to_json(orient="records")),
"statistics": json.loads(df.describe().to_json())
}
def _filter_data(self, df: pd.DataFrame, column: str, value: str) -> Dict[str, Any]:
"""Filters the DataFrame by a column value"""
if column not in df.columns:
raise ToolExecutionException(f"Column '{column}' not found")
filtered_df = df[df[column].astype(str).str.contains(value)]
return {
"originalRowCount": len(df),
"filteredRowCount": len(filtered_df),
"data": json.loads(filtered_df.to_json(orient="records"))
}
def _transform_data(self, df: pd.DataFrame, params: Dict[str, Any]) -> Dict[str, Any]:
"""Transforms the data based on parameters"""
# Implementation would include various transformations
return {
"status": "success",
"message": "Transformation applied"
}
def _convert_format(self, df: pd.DataFrame, format: str) -> Dict[str, Any]:
"""Converts the DataFrame to different formats"""
if format == "json":
return {
"data": json.loads(df.to_json(orient="records")),
"format": "json"
}
elif format == "csv":
return {
"data": df.to_csv(index=False),
"format": "csv"
}
elif format == "markdown":
return {
"data": df.to_markdown(),
"format": "markdown"
}
else:
raise ToolExecutionException(f"Unsupported output format: {format}")
Contribution Guidelines
To make a successful contribution to MCP projects:
- Start Small: Begin with documentation, bug fixes, or small enhancements
- Follow the Style Guide: Adhere to the coding style and conventions of the project
- Write Tests: Include unit tests for your code contributions
- Document Your Work: Add clear documentation for new features or changes
- Submit Targeted PRs: Keep pull requests focused on a single issue or feature
- Engage with Feedback: Be responsive to feedback on your contributions
Example Contribution Workflow
# Clone the repository
git clone https://github.com/modelcontextprotocol/typescript-sdk.git
cd typescript-sdk
# Create a new branch for your contribution
git checkout -b feature/my-contribution
# Make your changes
# ...
# Run tests to ensure your changes don't break existing functionality
npm test
# Commit your changes with a descriptive message
git commit -am "Fix validation in resource handler"
# Push your branch to your fork
git push origin feature/my-contribution
# Create a pull request from your branch to the main repository
# Then engage with feedback and iterate on your PR as needed
Creating and Sharing MCP Servers
One of the most valuable ways to contribute to the MCP ecosystem is by creating and sharing custom MCP servers. The community has already developed hundreds of servers for various services and use cases.
MCP Server Development Frameworks
Several frameworks are available to simplify MCP server development:
Official SDKs:
Community Frameworks:
- MCP-Framework - Build MCP servers with elegance and speed in TypeScript
- MCP Declarative Java SDK - Annotation-driven MCP servers with Java
- Quarkus MCP Server SDK - Java framework for MCP servers
- Next.js MCP Server Template - Starter Next.js project for MCP servers
Developing Shareable Tools
.NET Example: Creating a Shareable Tool Package
// Create a new .NET library project
// dotnet new classlib -n McpFinanceTools
using Microsoft.Mcp.Tools;
using System.Threading.Tasks;
using System.Net.Http;
using System.Text.Json;
namespace McpFinanceTools
{
// Stock quote tool
public class StockQuoteTool : IMcpTool
{
private readonly HttpClient _httpClient;
public StockQuoteTool(HttpClient httpClient = null)
{
_httpClient = httpClient ?? new HttpClient();
}
public string Name => "stockQuote";
public string Description => "Gets current stock quotes for specified symbols";
public object GetSchema()
{
return new {
type = "object",
properties = new {
symbol = new {
type = "string",
description = "Stock symbol (e.g., MSFT, AAPL)"
},
includeHistory = new {
type = "boolean",
description = "Whether to include historical data",
default = false
}
},
required = new[] { "symbol" }
};
}
public async Task<ToolResponse> ExecuteAsync(ToolRequest request)
{
// Extract parameters
string symbol = request.Parameters.GetProperty("symbol").GetString();
bool includeHistory = false;
if (request.Parameters.TryGetProperty("includeHistory", out var historyProp))
{
includeHistory = historyProp.GetBoolean();
}
// Call external API (example)
var quoteResult = await GetStockQuoteAsync(symbol);
// Add historical data if requested
if (includeHistory)
{
var historyData = await GetStockHistoryAsync(symbol);
quoteResult.Add("history", historyData);
}
// Return formatted result
return new ToolResponse {
Result = JsonSerializer.SerializeToElement(quoteResult)
};
}
private async Task<Dictionary<string, object>> GetStockQuoteAsync(string symbol)
{
// Implementation would call a real stock API
// This is a simplified example
return new Dictionary<string, object>
{
["symbol"] = symbol,
["price"] = 123.45,
["change"] = 2.5,
["percentChange"] = 1.2,
["lastUpdated"] = DateTime.UtcNow
};
}
private async Task<object> GetStockHistoryAsync(string symbol)
{
// Implementation would get historical data
// Simplified example
return new[]
{
new { date = DateTime.Now.AddDays(-7).Date, price = 120.25 },
new { date = DateTime.Now.AddDays(-6).Date, price = 122.50 },
new { date = DateTime.Now.AddDays(-5).Date, price = 121.75 }
// More historical data...
};
}
}
}
// Create package and publish to NuGet
// dotnet pack -c Release
// dotnet nuget push bin/Release/McpFinanceTools.1.0.0.nupkg -s https://api.nuget.org/v3/index.json -k YOUR_API_KEY
Java Example: Creating a Maven Package for Tools
// pom.xml configuration for a shareable MCP tool package
<!--
<project>
<groupId>com.example</groupId>
<artifactId>mcp-weather-tools</artifactId>
<version>1.0.0</version>
<dependencies>
<dependency>
<groupId>com.mcp</groupId>
<artifactId>mcp-server</artifactId>
<version>1.0.0</version>
</dependency>
</dependencies>
<distributionManagement>
<repository>
<id>github</id>
<name>GitHub Packages</name>
<url>https://maven.pkg.github.com/username/mcp-weather-tools</url>
</repository>
</distributionManagement>
</project>
-->
package com.example.mcp.weather;
import com.mcp.tools.Tool;
import com.mcp.tools.ToolRequest;
import com.mcp.tools.ToolResponse;
import com.mcp.tools.ToolExecutionException;
import java.net.http.HttpClient;
import java.net.http.HttpRequest;
import java.net.http.HttpResponse;
import java.net.URI;
import java.util.HashMap;
import java.util.Map;
public class WeatherForecastTool implements Tool {
private final HttpClient httpClient;
private final String apiKey;
public WeatherForecastTool(String apiKey) {
this.httpClient = HttpClient.newHttpClient();
this.apiKey = apiKey;
}
@Override
public String getName() {
return "weatherForecast";
}
@Override
public String getDescription() {
return "Gets weather forecast for a specified location";
}
@Override
public Object getSchema() {
Map<String, Object> schema = new HashMap<>();
// Schema definition...
return schema;
}
@Override
public ToolResponse execute(ToolRequest request) {
try {
String location = request.getParameters().get("location").asText();
int days = request.getParameters().has("days") ?
request.getParameters().get("days").asInt() : 3;
// Call weather API
Map<String, Object> forecast = getForecast(location, days);
// Build response
return new ToolResponse.Builder()
.setResult(forecast)
.build();
} catch (Exception ex) {
throw new ToolExecutionException("Weather forecast failed: " + ex.getMessage(), ex);
}
}
private Map<String, Object> getForecast(String location, int days) {
// Implementation would call weather API
// Simplified example
Map<String, Object> result = new HashMap<>();
// Add forecast data...
return result;
}
}
// Build and publish using Maven
// mvn clean package
// mvn deploy
Python Example: Publishing a PyPI Package
# Directory structure for a PyPI package:
# mcp_nlp_tools/
# ├── LICENSE
# ├── README.md
# ├── setup.py
# ├── mcp_nlp_tools/
# │ ├── __init__.py
# │ ├── sentiment_tool.py
# │ └── translation_tool.py
# Example setup.py
"""
from setuptools import setup, find_packages
setup(
name="mcp_nlp_tools",
version="0.1.0",
packages=find_packages(),
install_requires=[
"mcp_server>=1.0.0",
"transformers>=4.0.0",
"torch>=1.8.0"
],
author="Your Name",
author_email="your.email@example.com",
description="MCP tools for natural language processing tasks",
long_description=open("README.md").read(),
long_description_content_type="text/markdown",
url="https://github.com/username/mcp_nlp_tools",
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires=">=3.8",
)
"""
# Example NLP tool implementation (sentiment_tool.py)
from mcp_tools import Tool, ToolRequest, ToolResponse, ToolExecutionException
from transformers import pipeline
import torch
class SentimentAnalysisTool(Tool):
"""MCP tool for sentiment analysis of text"""
def __init__(self, model_name="distilbert-base-uncased-finetuned-sst-2-english"):
# Load the sentiment analysis model
self.sentiment_analyzer = pipeline("sentiment-analysis", model=model_name)
def get_name(self):
return "sentimentAnalysis"
def get_description(self):
return "Analyzes the sentiment of text, classifying it as positive or negative"
def get_schema(self):
return {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "The text to analyze for sentiment"
},
"includeScore": {
"type": "boolean",
"description": "Whether to include confidence scores",
"default": True
}
},
"required": ["text"]
}
async def execute_async(self, request: ToolRequest) -> ToolResponse:
try:
# Extract parameters
text = request.parameters.get("text")
include_score = request.parameters.get("includeScore", True)
# Analyze sentiment
sentiment_result = self.sentiment_analyzer(text)[0]
# Format result
result = {
"sentiment": sentiment_result["label"],
"text": text
}
if include_score:
result["score"] = sentiment_result["score"]
# Return result
return ToolResponse(result=result)
except Exception as e:
raise ToolExecutionException(f"Sentiment analysis failed: {str(e)}")
# To publish:
# python setup.py sdist bdist_wheel
# python -m twine upload dist/*
Sharing Best Practices
When sharing MCP tools with the community:
Complete Documentation:
- Document purpose, usage, and examples
- Explain parameters and return values
- Document any external dependencies
Error Handling:
- Implement robust error handling
- Provide useful error messages
- Handle edge cases gracefully
Performance Considerations:
- Optimize for both speed and resource usage
- Implement caching when appropriate
- Consider scalability
Security:
- Use secure API keys and authentication
- Validate and sanitize inputs
- Implement rate limiting for external API calls
Testing:
- Include comprehensive test coverage
- Test with different input types and edge cases
- Document test procedures
Community Collaboration and Best Practices
Effective collaboration is key to a thriving MCP ecosystem.
Communication Channels
- GitHub Issues and Discussions
- Microsoft Tech Community
- Discord and Slack channels
- Stack Overflow (tag:
model-context-protocol
ormcp
)
Code Reviews
When reviewing MCP contributions:
- Clarity: Is the code clear and well-documented?
- Correctness: Does it work as expected?
- Consistency: Does it follow project conventions?
- Completeness: Are tests and documentation included?
- Security: Are there any security concerns?
Version Compatibility
When developing for MCP:
- Protocol Versioning: Adhere to the MCP protocol version your tool supports
- Client Compatibility: Consider backward compatibility
- Server Compatibility: Follow server implementation guidelines
- Breaking Changes: Clearly document any breaking changes
Example Community Project: MCP Tool Registry
An important community contribution could be developing a public registry for MCP tools.
# Example schema for a community tool registry API
from fastapi import FastAPI, HTTPException, Depends
from pydantic import BaseModel, Field, HttpUrl
from typing import List, Optional
import datetime
import uuid
# Models for the tool registry
class ToolSchema(BaseModel):
"""JSON Schema for a tool"""
type: str
properties: dict
required: List[str] = []
class ToolRegistration(BaseModel):
"""Information for registering a tool"""
name: str = Field(..., description="Unique name for the tool")
description: str = Field(..., description="Description of what the tool does")
version: str = Field(..., description="Semantic version of the tool")
schema: ToolSchema = Field(..., description="JSON Schema for tool parameters")
author: str = Field(..., description="Author of the tool")
repository: Optional[HttpUrl] = Field(None, description="Repository URL")
documentation: Optional[HttpUrl] = Field(None, description="Documentation URL")
package: Optional[HttpUrl] = Field(None, description="Package URL")
tags: List[str] = Field(default_factory=list, description="Tags for categorization")
examples: List[dict] = Field(default_factory=list, description="Example usage")
class Tool(ToolRegistration):
"""Tool with registry metadata"""
id: uuid.UUID = Field(default_factory=uuid.uuid4)
created_at: datetime.datetime = Field(default_factory=datetime.datetime.now)
updated_at: datetime.datetime = Field(default_factory=datetime.datetime.now)
downloads: int = Field(default=0)
rating: float = Field(default=0.0)
ratings_count: int = Field(default=0)
# FastAPI application for the registry
app = FastAPI(title="MCP Tool Registry")
# In-memory database for this example
tools_db = {}
@app.post("/tools", response_model=Tool)
async def register_tool(tool: ToolRegistration):
"""Register a new tool in the registry"""
if tool.name in tools_db:
raise HTTPException(status_code=400, detail=f"Tool '{tool.name}' already exists")
new_tool = Tool(**tool.dict())
tools_db[tool.name] = new_tool
return new_tool
@app.get("/tools", response_model=List[Tool])
async def list_tools(tag: Optional[str] = None):
"""List all registered tools, optionally filtered by tag"""
if tag:
return [tool for tool in tools_db.values() if tag in tool.tags]
return list(tools_db.values())
@app.get("/tools/{tool_name}", response_model=Tool)
async def get_tool(tool_name: str):
"""Get information about a specific tool"""
if tool_name not in tools_db:
raise HTTPException(status_code=404, detail=f"Tool '{tool_name}' not found")
return tools_db[tool_name]
@app.delete("/tools/{tool_name}")
async def delete_tool(tool_name: str):
"""Delete a tool from the registry"""
if tool_name not in tools_db:
raise HTTPException(status_code=404, detail=f"Tool '{tool_name}' not found")
del tools_db[tool_name]
return {"message": f"Tool '{tool_name}' deleted"}
Key Takeaways
- The MCP community is diverse and welcomes various types of contributions
- Contributing to MCP can range from core protocol enhancements to custom tools
- Following contribution guidelines improves the chances of your PR being accepted
- Creating and sharing MCP tools is a valuable way to enhance the ecosystem
- Community collaboration is essential for the growth and improvement of MCP
Exercise
- Identify an area in the MCP ecosystem where you could make a contribution based on your skills and interests
- Fork the MCP repository and set up a local development environment
- Create a small enhancement, bug fix, or tool that would benefit the community
- Document your contribution with proper tests and documentation
- Submit a pull request to the appropriate repository